THE SYSTEM THEORY OF NETWORK CALCULUS

J.-Y. Le Boudec
EPFL
WoNeCa, 2012 Mars 21
Contents

1. Network Calculus’s System Theory and Two Simple Examples

2. More Examples

3. Time versus Space
The Shaper

- **shaper**: forces output to be constrained by σ
- **greedy** shaper stores data in a buffer only if needed
- examples:
 - constant bit rate link ($\sigma(t)=ct$)
 - ATM shaper; fluid leaky bucket controller
- **Pb**: find input/output relation
A Min-Plus Model of Shaper

Shaper Equations:

1. \[x \leq x \otimes \sigma \]
2. \[x \leq R \]

- \(R \) and \(x \) are functions
- \(\sigma \) is sub-additive
- \(\otimes \) is min-plus convolution
Network Calculus’s System Theory

- $G = \text{set of functions } Z \rightarrow R^+ \text{ that are wide-sense increasing}$
- Also works in continuous time, functions are left-continuous $R \rightarrow R^+$
- An operator Π is a mapping : $G \rightarrow G$
- Π is isotone if $x(t) \leq y(t) \Rightarrow \Pi(x)(t) \leq \Pi(y)(t)$
- Π is upper-semi continuous iff
 \[\inf_i(\Pi(x_i)) = \Pi(\inf_i(x_i)) \text{ for } \downarrow \text{ sequences } x_i \]
Min-Plus Linear Operators

- \(\Pi \) is min-plus linear if
 - for any constant \(K \), \(\Pi(x + K) = \Pi(x) + K \)
 - \(\Pi(x \land y) = \Pi(x) \land \Pi(y) \)
 - \(\Pi \) is upper-semi continuous.

- **Representation Theorem**: \(\Pi \) is min-plus linear \(\iff \) there is a unique \(H : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^+ \), \(\uparrow \) in \(t \) and \(\downarrow \) in \(s \), such that
 \[
 \Pi(x)(t) = \inf_s [H(t,s) + x(s)]
 \]

- min-plus linear \(\Rightarrow \) isotone and upper semi-continuous

- Example: convolution operator
 \[
 C_{\sigma} : x \mapsto \sigma \otimes x
 \]

- Example: \(M \in G \) is given:
 \[
 h_M : x \mapsto y \text{ s.t. } y(t) = \inf_{s \leq t} (M(t) - M(s) + x(s))
 \]
Min-Plus Residuation Theorem

Theorem: ([L., Thiran 2001] thm 4.3.1., derived from Baccelli et al.,) Assume that Π is *isotone* and *upper-semi-continuous*. The problem

$$x(t) \leq b(t) \land \Pi(x)(t)$$

where $x \in G$ is the unknown function has one maximum solution in G, given by

$$x^*(t) = \Pi(b)(t)$$

(Definition of closure)

$$\Pi(x) = \inf \{x, \Pi(x), \Pi\Pi(x), \Pi\Pi\Pi(x), ...\}$$

in other words:

$$x^0 = b; x^i = \Pi(x^{i-1}) \text{ and } x^* = \inf \{x^0, x^1, ..., x^i, ...\}$$
Application to Shaper

There is a maximum solution obtained by iterating

\[x^{(0)} = R \]
\[x^{(1)} = R \otimes \sigma \]
\[x^{(2)} = (R \otimes \sigma) \otimes \sigma = R \otimes \sigma \]

because \(\sigma \otimes \sigma = \sigma \)

Thus \(R^* = \inf (x^{(0)}, x^{(1)}, x^{(2)}, \ldots) = R \otimes \sigma \)

The greedy shaper output is \(R^* = R \otimes \sigma \)

\(C_\sigma \circ C_\sigma = C_\sigma \), the subadditive closure of \(C_\sigma \) is \(C_\sigma \)
Variable Capacity Node

node has a time varying capacity $\mu(t)$
Define $M(t) = \int_0^t \mu(s) \, ds$.
the output satisfies
$R^*(t) \leq R(t)$
$R^*(t) - R^*(s) \leq M(t) - M(s)$ for all $s \leq t$
and is “as large as possible”
Variable Capacity Node

\[R^*(t) \leq R(t) \]
\[R^*(t) - R^*(s) \leq M(t) - M(s) \]
for all \(s \leq t \)

- Operator \(h_M \): \(x \mapsto y \) s.t.
 \[y(t) = \inf_{s \leq t} M(t) - M(s) + x(s) \]

- We have the problem \(R^* \leq R, R^* \leq h_M(R) \)
- \(h_M \circ h_M = h_M \) and the sub-additive closure of \(h_M \) is \(h_M \)
- There is a maximum solution,
 \[R^*(t) = \inf_{s \leq t} (M(t) - M(s) + R(s)) \]
2. MORE EXAMPLES
A System with Loss [Chuang and Cheng 2000]

- node with service curve $\beta(t)$ and buffer of size X
- when buffer is full incoming data is discarded
- modelled by a virtual controller (not buffered)
- fluid model or fixed sized packets
- Pb: find loss ratio
A System with Loss

Assume R is α – smooth; if $X \geq \nu(\alpha, \beta)$ then no loss

If $X < h(\alpha, \beta)$, what can we say?
Thm [Chuang and Cheng 2000] Let r be the largest such that $X = v(r\alpha, \beta)$ i.e. $r = 1 \wedge \inf_{t>0} \left(\frac{\beta(t)+X}{\alpha(t)} \right)$

Then $\frac{L(t)}{R(t)} \leq 1 - r^*$; it is the best possible bound.
Analysis of System with Loss

1. $R'(t) - R'(s) \leq R(t) - R(s) \forall s \leq t$ (splitter)
2. $R'(t) - \Pi R'(t) \leq X$ (buffer does not overflow)

where Π is the transformation $R' \rightarrow R$, assumed isotone and usc ("physical assumptions")

There is a maximum solution and R' is the maximum solution
Analysis of System with Loss

1. $R'(t) - R'(s) \leq R(t) - R(s) \forall s \leq t$ (splitter)
2. $R'(t) - \Pi R'(t) \leq X$ (buffer does not overflow)

- Let $x(t) = rR(t)$ with r given by thm.
- Eqn 1 is satisfied
- x is $r\alpha$ — smooth, thus required buffer $\leq X$ and Eqn 2 is satisfied
- Thus $R'(t) \geq x(t)$ and

 \[
 \frac{L(t)}{R(t)} = 1 - \frac{R'(t)}{R(t)} \leq 1 - \frac{x(t)}{R(t)} = 1 - r
 \]
Optimal Smoothing [L., Verscheure 2000]

- Network + end-client offer a service curve β to flow $R'(t)$
- Smoother delivers a flow $R'(t)$ conforming to an arrival curve σ.
- Video stream is stored in the client buffer, read after a playback delay D.
- Pb: which smoothing strategy minimizes D?
Optimal Smoothing, System Equations

- (1) R' is σ-smooth
- (2) $(R' \otimes \beta)(t) \geq R(t-D)$

Use deconvolution $(a \ominus b)(t) = \sup_{s \geq 0} (a(t + s) - b(s))$

$x \leq y \otimes \beta \iff x \ominus \beta \leq y$

- system becomes
 - (1) $R' \geq R' \ominus \sigma$
 - (2) $R' \geq (R \ominus \beta)(t-D)$
Optimal Smoothing, System Equations

This is a max-plus linear problem, it has a minimum solution R' given by the iterations:

1. $R' \geq R' \ominus \sigma$
2. $R' \geq (R \ominus \beta)(t-D)$

Thus $R'(t) = (R \ominus (\sigma \otimes \beta))(t-D)$
Example

A possible $R'(t)$

$R \odot (\sigma \otimes \beta)(t-D)$

$\sigma \otimes \beta(t)$

$R(t-D)$
Minimum Playback Delay

D must satisfy:
\[R \ominus (\beta \otimes \sigma) (-D) \geq 0 \]

this is equivalent to
\[D \geq h(R, \beta \otimes \sigma) \]
\(R(t) \)

\[(\sigma \otimes \beta)(t) \]

\(D = 435 \text{ ms} \)

\[(\sigma \otimes \beta)(t) \]

\(D = 102 \text{ ms} \)
The Perfect Battery

- Battery may be charged \((u(t) > \ell(t))\) or discharged \((u(t) < \ell(t))\)
- Load \(\ell(t)\) is given
- Problem is to determine a power schedule \(u(t)\), subject to \(0 \leq u(t) \leq g(t)\) and within battery constraints
System Equations for the Perfect Battery

1. $L(t) \leq B_0 + U(t)$ no underflow
2. $U(t) - L(t) + B_0 \leq B$ no overflow
3. $U(t) - U(s) \leq G(t) - G(s), \forall s \leq t$ power constraint

where $U(t), L(t), G(t)$ are cumulative functions such as $U(t) = \int_0^t u(s) ds$
System Equations

1. \(L(t) \leq B_0 + U(t) \) no underflow
2. \(U(t) - L(t) + B_0 \leq B \) no overflow
3. \(U(t) - U(s) \leq G(t) - G(s), \forall s \leq t \)

- Relax (eq 1):
 \[
 U(t) \leq (B - B_0 + L(t))1_{t>0} \\
 U(t) \leq h_G(U)(t)
 \]

There is a maximum solution,
\[
U^*(t) = G(t) \land \inf_{s \leq t}(G(t) - G(s) + L(s) + B - B_0)
\]

\(U^* \) is causal

The problem is feasible iff \(U^* \) satisfies (eq 1), i.e.
\[
\begin{align*}
 B_0 &\geq \sup_t (L(t) - G(t)) \\
 B &\geq \sup_{0 \leq s \leq t} (L(t) - L(s) - G(t) + G(s))
\end{align*}
\]
System Equations

1. $L(t) \leq B_0 + U(t)$ no underflow
2. $U(t) - L(t) + B_0 \leq B$ no overflow
3. $U(t) - U(s) \leq G(t) - G(s), \forall s \leq t$

Relax (eq 2):

\[
U(t) \geq \max(0, -B_0 + L(t)) \\
U(s) \geq \sup_{\tau \geq s} (G(s) - G(\tau) + U(\tau))
\]

There is a minimum solution,

\[
U_*(t) = 0 \lor \sup_{\tau \geq t} (G(t) - G(\tau) + L(\tau) - B_0)
\]

U_* is non-causal

The problem is feasible iff U_* satisfies (eq 2)

This gives the same conditions
3. TIME VERSUS SPACE
The Residuation Theorem is a Space Method

- The maximum solution x^* to the problem
 \[x \leq b \\
 x \leq \Pi x \]
 is given by iterates over the entire trajectory
 \[
 x^{(0)} = b \\
 x^{(1)} = \Pi x^{(0)} \\
 x^{(2)} = \Pi x^{(1)} \\
 etc
 \]

- When time is discrete there may be another way to compute x^* by time recursion
The Shaper, Time Method

- Time is discrete \(t = 0, 1, 2, \ldots \)
- Define \(R' \) by:
 \[
 R'(0) = R(0) = 0 \\
 R'(t) = R(t) \land \inf_{0 \leq u \leq t-1} (\sigma(t-u) + R'(u))
 \]
- \(R' \) is solution
- For any other solution \(x, x(t) \leq R'(t) \) [induction]
- \(R' \) is the maximal solution, i.e. \(R' = R^* \).
- Note the difference in representation:
 \[
 R^*(t) = R(t) \land \inf_{0 \leq u \leq t-1} (\sigma(t-u) + R(u))
 \]

\[
(1) \ x \leq x \otimes \sigma \\
(2) \ x \leq R
\]
The Time Method for *Linear* Problems

- [L., Thiran 2001] Thm 4.4.1: the problem in discrete time
 \[x(t) \leq b(t) \]
 \[x(t) \leq \inf_{s} (H(t, s) + x(s)) \]
 where \(H : N \times N \rightarrow R^+ \), ↑ in \(t \) and ↓ in \(s \)

has a maximal solution \(x^* \) given by
 \[x^*(0) = b(0) \]
 \[x^*(t) = x(t) \wedge \inf_{0 \leq u \leq t-1} (H(t, u) + x^*(u)) \]

- This is a second, alternative representation for \(x^* \)
There is a maximum solution,

\[U^*(t) = G(t) \land \inf_{s \leq t} (G(t) - G(s) + L(s) + B - B_0) \]

It can be computed by the time method:

\[u^*(t) = \min (g(t), B - B(t) + \ell(t)) \]

The minimum schedule is anti-causal and can be computed with time reversal
Conclusion

- Min-plus and max-plus system theory contains a central result: residuation theorem (= fixed point theorem)
 Establishes existence of maximum (resp. minimum) solutions
 and provides a representation

- Space and Time methods give different representations
Thank You...